Structural Variation and Uniformity among Tetraloop-Receptor Interactions and Other Loop-Helix Interactions in RNA Crystal Structures

نویسندگان

  • Li Wu
  • Dinggeng Chai
  • Marie E. Fraser
  • Steven Zimmerly
چکیده

Tetraloop-receptor interactions are prevalent structural units in RNAs, and include the GAAA/11-nt and GNRA-minor groove interactions. In this study, we have compiled a set of 78 nonredundant loop-helix interactions from X-ray crystal structures, and examined them for the extent of their sequence and structural variation. Of the 78 interactions in the set, only four were classical GAAA/11-nt motifs, while over half (48) were GNRA-minor groove interactions. The GNRA-minor groove interactions were not a homogeneous set, but were divided into five subclasses. The most predominant subclass is characterized by two triple base pair interactions in the minor groove, flanked by two ribose zipper contacts. This geometry may be considered the "standard" GNRA-minor groove interaction, while the other four subclasses are alternative ways to form interfaces between a minor groove and tetraloop. The remaining 26 structures in the set of 78 have loops interacting with mostly idiosyncratic receptors. Among the entire set, a number of sequence-structure correlations can be identified, which may be used as initial hypotheses in predicting three-dimensional structures from primary sequences. Conversely, other sequence patterns are not predictive; for example, GAAA loop sequences and GG/CC receptors bind to each other with three distinct geometries. Finally, we observe an example of structural evolution in group II introns, in which loop-receptor motifs are substituted for each other while maintaining the larger three-dimensional geometry. Overall, the study gives a more complete view of RNA loop-helix interactions that exist in nature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Annotation of tertiary interactions in RNA structures reveals variations and correlations.

RNA tertiary motifs play an important role in RNA folding and biochemical functions. To help interpret the complex organization of RNA tertiary interactions, we comprehensively analyze a data set of 54 high-resolution RNA crystal structures for motif occurrence and correlations. Specifically, we search seven recognized categories of RNA tertiary motifs (coaxial helix, A-minor, ribose zipper, ps...

متن کامل

Solution structure of a GAAA tetraloop receptor RNA.

The GAAA tetraloop receptor is an 11-nucleotide RNA sequence that participates in the tertiary folding of a variety of large catalytic RNAs by providing a specific binding site for GAAA tetraloops. Here we report the solution structure of the isolated tetraloop receptor as solved by multidimensional, heteronuclear magnetic resonance spectroscopy. The internal loop of the tetraloop receptor has ...

متن کامل

The λ-Turn: A New Structural Motif in Ribosomal RNA

RNA structural motifs are recurrent structural elements occurring in RNA molecules. They play essential roles in consolidating RNA tertiary structures and in binding proteins. Recently, we identified a new type of RNA structural motif, namely λ-turn, from ribosomal RNAs. This motif has a helix-internal loop-helix structure. The directions of its two helices are changed *90° due to the existence...

متن کامل

Solution probing of metal ion binding by helix 27 from Escherichia coli 16S rRNA.

Helix (H)27 from Escherichia coli 16S ribosomal (r)RNA is centrally located within the small (30S) ribosomal subunit, immediately adjacent to the decoding center. Bacterial 30S subunit crystal structures depicting Mg(2+) binding sites resolve two magnesium ions within the vicinity of H27: one in the major groove of the G886-U911 wobble pair, and one within the GCAA tetraloop. Binding of such me...

متن کامل

Role of metal ions in the tetraloop-receptor complex as analyzed by NMR.

Metal ions are critical for the proper folding of RNA, and the GAAA tetraloop-receptor is necessary for the optimal folding and function of many RNAs. We have used NMR to investigate the role of metal ions in the structure of the tetraloop-receptor in solution. The NMR data indicate native tertiary structure is formed under a wide range of ionic conditions. The lack of conformational adaptation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012